

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface

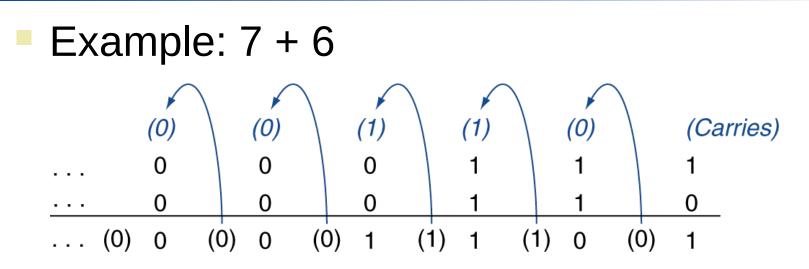
Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- **Operations on integers**
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition



- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0
 - Chapter 3 Arithmetic for Computers 3

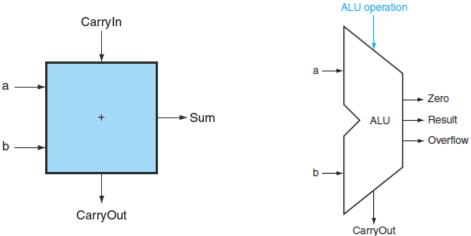
Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Dealing with Overflow

- Some languages (e.g., C) ignore overflowUse MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

ALU



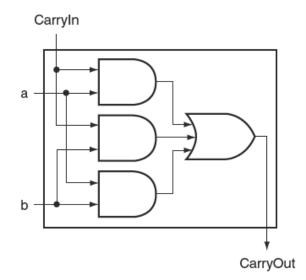
Inputs		Outputs			
а	b	Carryin	CarryOut	Sum	Comments
0	0	0	0	0	$0 + 0 + 0 = 00_{two}$
0	0	1	0	1	$0 + 0 + 1 = 01_{two}$
0	1	0	0	1	$0 + 1 + 0 = 01_{two}$
0	1	1	1	0	$0 + 1 + 1 = 10_{two}$
1	0	0	0	1	$1 + 0 + 0 = 01_{two}$
1	0	1	1	0	$1 + 0 + 1 = 10_{two}$
1	1	0	1	0	$1 + 1 + 0 = 10_{two}$
1	1	1	1	1	$1 + 1 + 1 = 11_{two}$

FIGURE B.5.3 Input and output specification for a 1-bit adder.

ALU (Cont..)

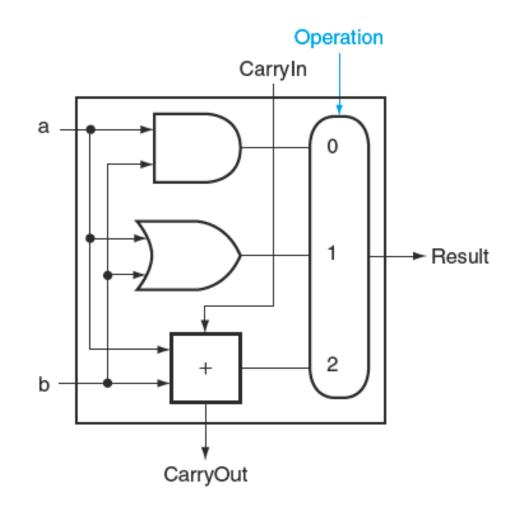
 $CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b)$

Inputs				
а	b	Carryin		
0	1	1		
1	0	1		
1	1	0		
1	1	1		

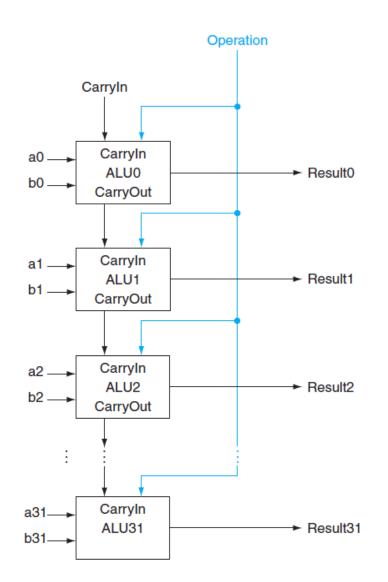


 $Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$

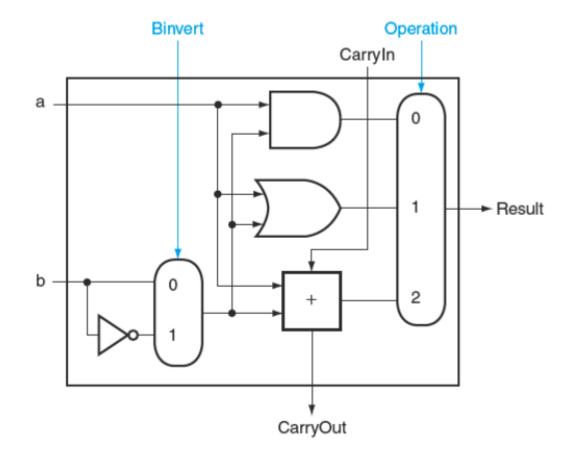
1-bit ALU (ADD, AND & OR)



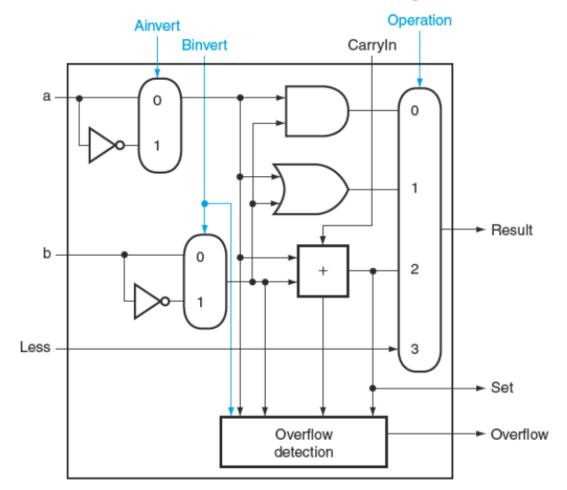
32-bit ALU



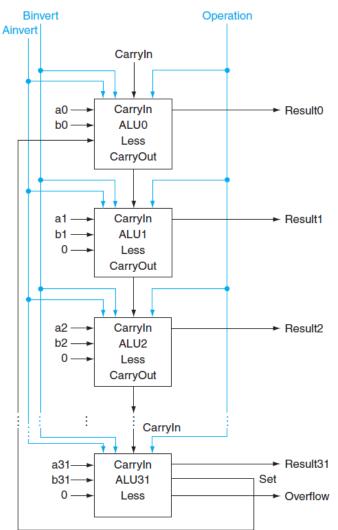
1-bit ALU (ADD, SUB, AND & OR)



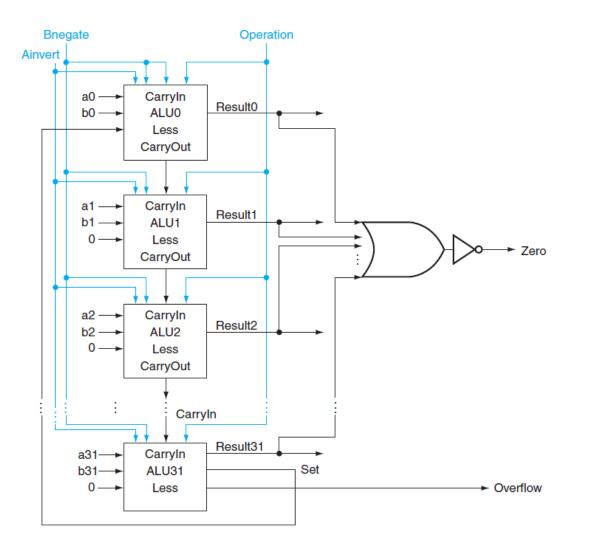
1-bit ALU (ADD, SUB, AND, OR & SLT)

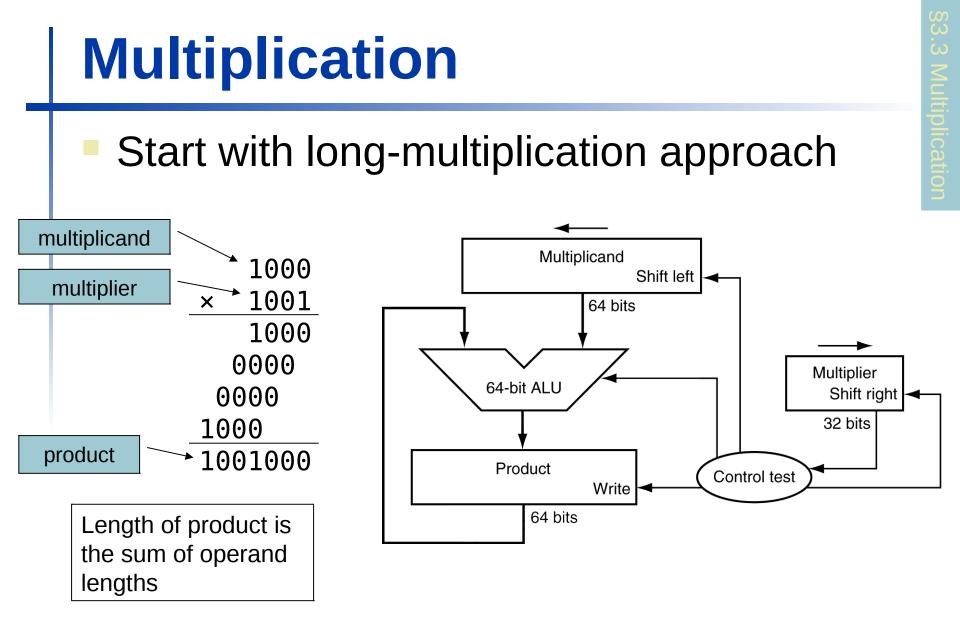


32-bit ALU (ADD, SUB, AND, OR & SLT)

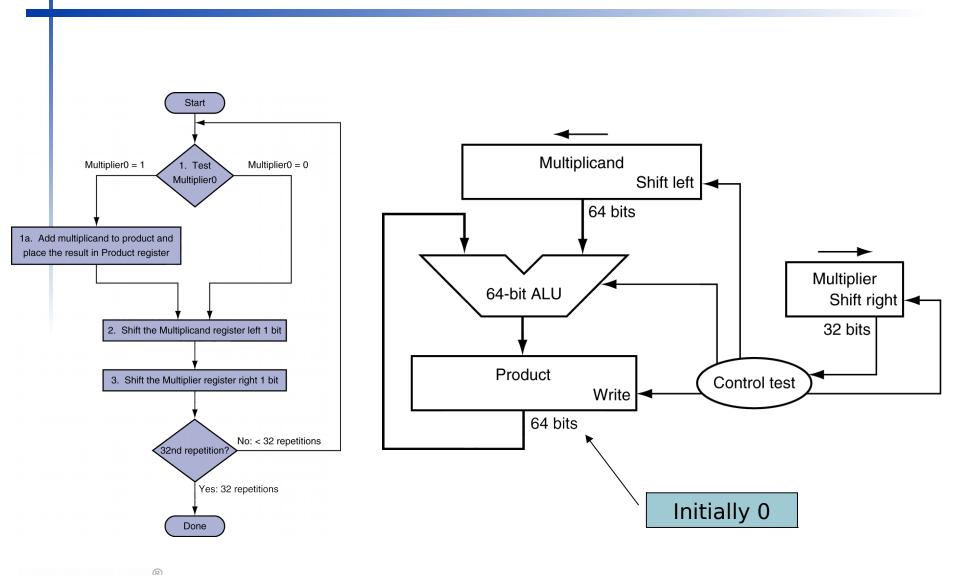


32-bit ALU (ADD, SUB, AND, OR, SLT & EQ)





Multiplication Hardware

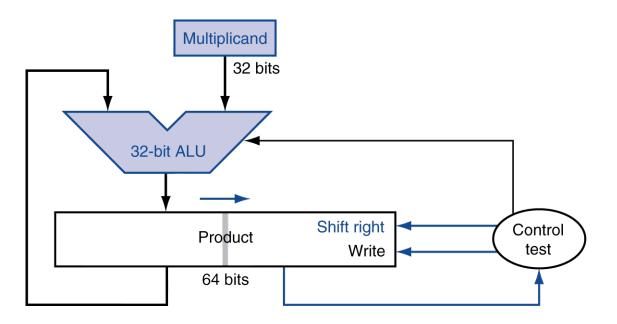


Multiplier (Cont..)

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: 1 \implies Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0000	0000 0100	0000 0010
2	1a: 1 \Rightarrow Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: $0 \Rightarrow No operation$	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: $0 \Rightarrow No operation$	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized Multiplier

Perform steps in parallel: add/shift

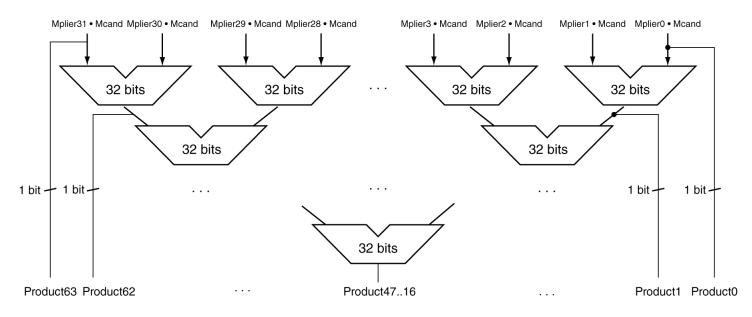


One cycle per partial-product addition
 That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff



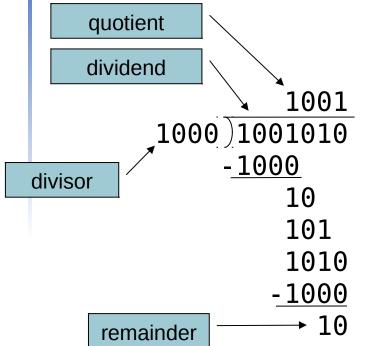
Can be pipelined

- Several multiplication performed in parallel
- Chapter 3 Arithmetic for Computers 18

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

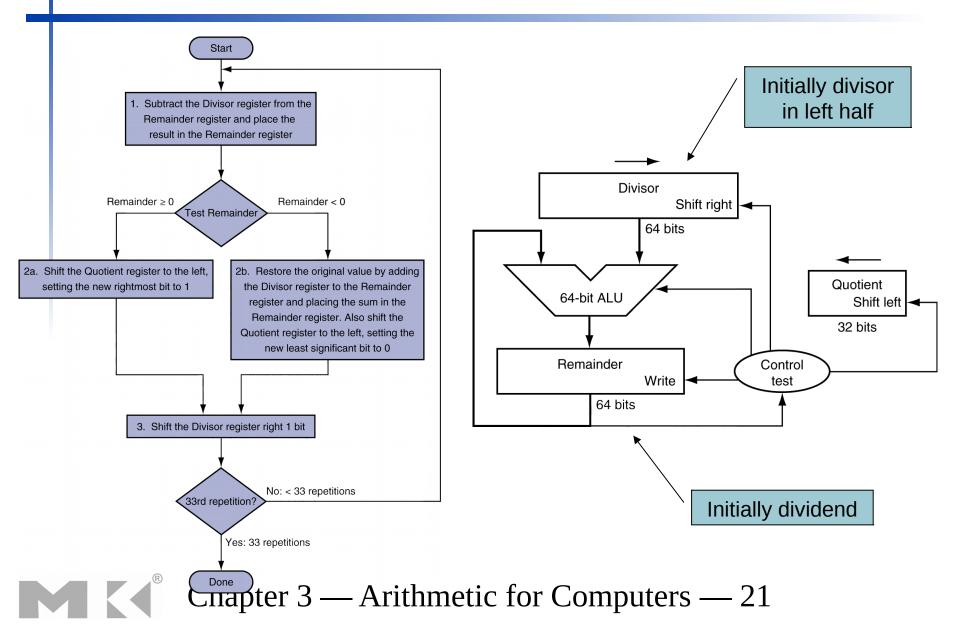
Division



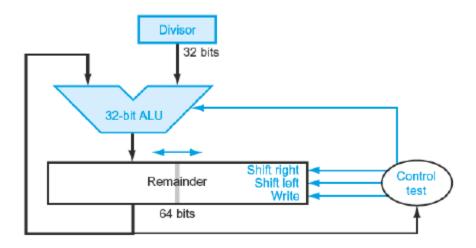
n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor \leq dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
 - Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

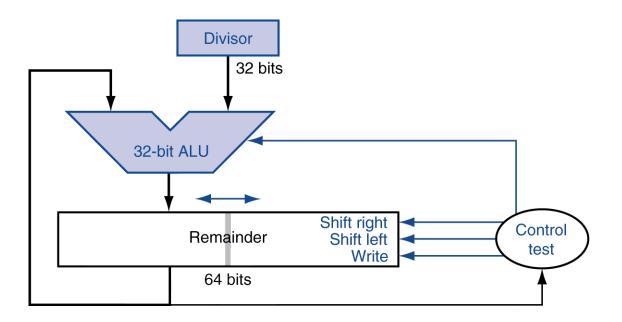


Division (Cont..)



Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	()110 0111
1	2b: Rem < $0 \implies$ +Div, sll Q, Q $0 = 0$	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	()111 0111
2	2b: Rem < $0 \implies$ +Div, sll Q, Q $0 = 0$	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	@111 1111
3	2b: Rem < 0 \implies +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem $\ge 0 \implies$ sll Q, QO = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem – Div	0001	0000 0010	0000 0001
5	2a: Rem $\ge 0 \implies$ sll Q, QO = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider



- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

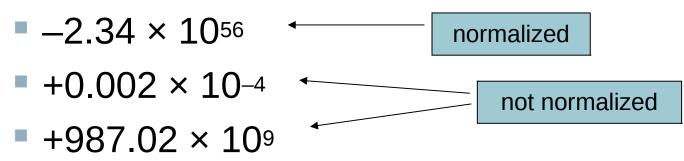
- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision) generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation



- In binary
 - $\pm 1.xxxxxx_2 \times 2yyy$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

	ingle: 8 bits louble: 11 bi	single: 23 bits ts double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

- S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \le |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001 \Rightarrow actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001 \Rightarrow actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 111111110⇒ actual exponent = 2046 - 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{\pm 1023} \approx \pm 1.8 \times 10^{\pm 308}$

Floating-Point Precision

- **Relative precision**
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2–52
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^{1} \times 1.1_{2} \times 2^{-1}$
 - S = 1
 - Fraction = 1000...00₂
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: -1 + 1023 = 1022 = 0111111110₂
- Single: 1011111101000...00
- Double: 10111111110100...00

Floating-Point Example

- What number is represented by the singleprecision float
 - 1100000101000...00

■ S = 1

- Fraction = 01000...00₂
- Fxponent = 10000001₂ = 129

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

= (-1) × 1.25 × 2²
= -5.0

Floating-Point Addition

- Consider a 4-digit decimal example
 - 9.999 × 10^{1} + 1.610 × 10^{-1}
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
 - 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^{2}

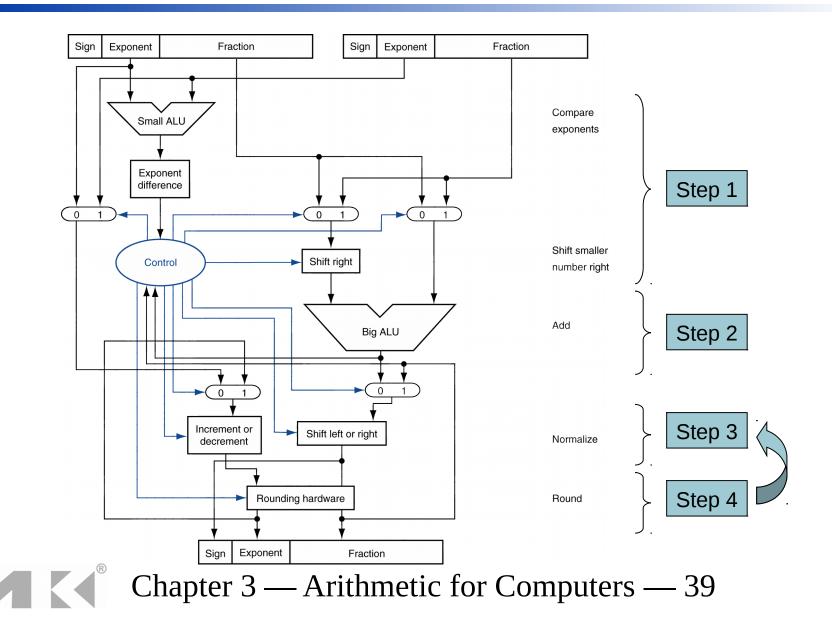
Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware



FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bclt, bclf
 - e.g., bc1t TargetLabel

FP Example: °F to °C

- C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr 32.0));
 }
 - fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
    lwc2 $f18, const9($gp)
    div.s $f16, $f16, $f18
    lwc1 $f18, const32($gp)
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```

FP Example: Array Multiplication

$$X = X + Y \times Z$$

- All 32 × 32 matrices, 64-bit double-precision elements
- C code:
 - - Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Array Multiplication

MIPS code:

...

	li	\$t1,	32		#	\$t1	= 32 (row size/loop end)
	li	\$s0,	0			-	0; initialize 1st for loop
L1:	li	\$s1,	0		#	j =	0; restart 2nd for loop
L2:	li	\$s2,	0		#	k =	0; restart 3rd for loop
	sll	\$t2,	\$s0,	5	#	\$t2	= i * 32 (size of row of x)
	addu	\$t2,	\$t2,	\$s1	#	\$t2	= i * size(row) + j
	sll	\$t2,	\$t2,	3	#	\$t2	<pre>= byte offset of [i][j]</pre>
	addu	\$t2,	\$a0,	\$t2	#	\$t2	<pre>= byte address of x[i][j]</pre>
	l.d	\$f4,	0(\$t2	2)	#	\$f4	= 8 bytes of x[i][j]
L3:	sll	\$t0,	\$s2,	5	#	\$t0	= k * 32 (size of row of z)
	addu	\$t0,	\$t0,	\$s1	#	\$t0	= k * size(row) + j
	sll	\$t0,	\$t0,	3	#	\$t0	<pre>= byte offset of [k][j]</pre>
	addu	\$t0,	\$a2,	\$t0	#	\$t0	<pre>= byte address of z[k][j]</pre>
	l.d	\$f16	, 0(\$t	:0)	#	\$f16	6 = 8 bytes of z[k][j]

FP Example: Array Multiplication

sll	\$t0, \$	5s0, 5	5	#	t0 = i*32 (size of row of y)
addu	\$t0,	\$t0,	\$s2	#	t0 = i*size(row) + k
sll	\$t0,	\$t0,	3	#	<pre>\$t0 = byte offset of [i][k]</pre>
addu	\$t0,	\$al,	\$t0	#	<pre>\$t0 = byte address of y[i][k]</pre>
l.d	\$f18,	0(\$1	t0)	#	f18 = 8 bytes of y[i][k]
mul.	d \$f16,	\$f18	3, \$f16	#	f16 = y[i][k] * z[k][j]
add.	d \$f4,	\$f4,	\$f16	#	f4=x[i][j] + y[i][k]*z[k][j]
addi	u \$s2,	\$s2,	1	#	\$k k + 1
bne	\$s2,	\$t1,	L3	#	if (k != 32) go to L3
s.d	\$f4,	0(\$t2	2)	#	x[i][j] = \$f4
addi	u \$s1,	\$s1,	1	#	\$j = j + 1
bne	\$s1,	\$t1,	L2	#	if (j != 32) go to L2
addi	u \$s0,	\$s0,	1	#	\$i = i + 1
bne	\$s0,	\$t1,	L1	#	if (i != 32) go to L1

Interpretation of Data

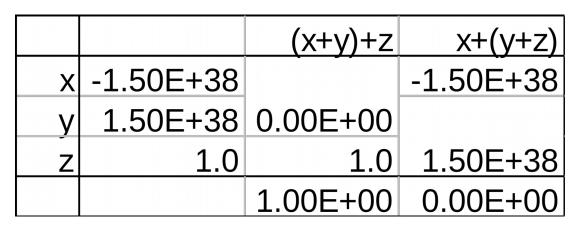
The BIG Picture

Bits have no inherent meaning

- Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail



Need to validate parallel programs under varying degrees of parallelism

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	<pre>FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT</pre>	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - <u>Single-Instruction Multiple-Data</u>

Right Shift and Division

- Left shift by *i* places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 1111110_2 = -2$
 - Rounds toward $-\infty$
 - c.f. 11111011₂ >>> 2 = 00111110₂ = +62

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ③
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, *The Pentium Chronicles*

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent